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Summary. A time-dependent coupled-cluster approach may be employed to 
describe dynamic processes of many-electron systems. Atomic properties, such as 
the frequency-dependent polarizability, can be treated as a response of the 
system described by the coupled-cluster expansion to an external radiation field. 
The major difficulty in the realization of such a formalism is to deal with 
dynamic pair functions. The procedure reported here is to simplify the full set of 
single- and pair-excitation expansion equations }to a subset of equations which 
includes polarization and relaxation effects to all orders and is solved by using a 
complete set of discrete basis functions. Calculations of excitation energies and 
frequency-dependent electric dipole polarizabilities for helium are presented. 
Application of the procedure to calculate photoionization cross sections is 
discussed. 
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I. Introduction 

Correlation effects of a many-electron system subjected to a time-dependent 
external interaction may be studied by the time-dependent coupled-cluster 
(TDCC) approach [1-4], which is the application of the coupled-cluster theory 
[5-7] to dynamic processes of atoms and molecules. TDCC is equivalent to 
summation of large numbers of Goldstone diagrams corresponding to a certain 
truncation level of multiple-particle excitations and with some electron-electron 
lines replaced by external perturbation lines. The TDCC formalism, as reported 
by several groups [ 1-4], provides a useful method to calculate not only dynamic 
but also static properties of atoms and molecules, such as excitation energies, 
transition probabilities, and frequency-dependent polarizabilities. To our knowl- 
edge, however, there are no published results thus far of the implementation of 
this formalism. The major difficulty encountered in implementing the formalism 
in dealing with the dynamic pair functions. 

The procedure presented in this work is to simplify the full set of single- 
particle and pair excitation amplitude equations to a subset of equations to take 
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account of polarization and relaxation effects to all orders. As is well known, the 
truncation scheme including only single-particle excitation amplitudes in the 
TDCC formalism leads to the Tamm-Dancoff approximation (TDA) [8]. When 
complex-conjugated single-particle excitation amplitudes are also considered, one 
can obtain the random-phase approximation (RPA) [9-10]. From the point of 
view of many-body perturbation theory (MBPT), the RPA results correspond to 
the first-order correlation corrections together with their higher-order chains, i.e. 
contributions obtained by iterating the first-order corrections. In this work the 
all-order polarization and relaxation approximation (PRA) scheme gives a 
prescription for iterating not only first-order corrections, but also those second- 
order corrections obtained by coupling pair excitations with single-particle 
excitations. Significant improvement of accuracy in the present PRA scheme is 
expected. 

Many-body perturbation theory (MBPT) provides a systematic approach to 
obtain high-accuracy results for atomic properties. One of the advantages of 
MBPT is to use diagrammatic representation to give a clear interpretation of the 
physics behind calculations. However, the major disadvantage of MBPT is that 
the inclusion of higher-order diagrams can be very tedious and time consuming. 
The present method has the advantage of MBPT in showing a clear picture of 
what kind of correction effects are included in the calculation, and also includes 
higher-order terms of MBPT by summing certain classes of diagrams to all 
orders. 

In Sect. 2 we give a brief outline of the TDCC theory for dynamic 
polarizability calculations. In Sect. 3 we derive the all-order PRA scheme as a 
reasonable approximation for the CCSD in dynamic processes. Following this 
derivation, in Sect. 4 we apply the PRA method to helium by using a finite-basis- 
set expansion in the relativistic frame work. Therefore, the method implemented 
in our work can be applied to heavy atoms. 

2. Time-dependent coupled-cluster theory 

The TDCC theory [1-4] is applied to an N-electron atom with the Dirac- 
Coulomb Hamiltonian plus an additional interaction term: 

H = H o + H  c + V~(t), (1) 

where 

H o = ~ [c~, "Pi + m(fli - 1) c2 + Vnuc(ri) + U(ri)], 
i 

(2) 

and 
N N 

Hc = ~, v O" - - ~  U(ri). (3) 
i < j  i 

The term V,u¢(ri) is the nuclear potential, U(ri) is an independent-particle-model 
potential, and v~ represents the Coulomb interaction between pairs of electrons. 
When the atom is exposed to an external electromagnetic field, the additional 
time-dependent interaction V'(t) is given as: 

V'(t) = ~ [V+ (r,) e-i~t+ V ( r , )  e '~'1 e-~L'l, (4) 
i 
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where the time-independent operators V± (I,) may be expressed as a multipole 
expansion of scalar and vector potentials of the radiation field [11] and satisfy 
V+ = V*_ to ensure Hermiticity of V'(t), e-4tl is an adiabatic-switching factor. 

The solution ~(t) of the time-dependent Schr6dinger equation: 

i ~ ~(t) = H~( t )  (5) 

may be written as the form [1-4] of: 

~(t) = e -;e,- ~*)f2'(t)f2~o. (6) 

It implies a two-step procedure to solve Eq. (5) for ~(t). At the first step, we 
solve a time-independent Schr6dinger equation of: 

(Ho + H~)g2~o = EQ~o (7) 

for the wave operator ~ with a coupled-cluster exponential ansatz [5-7]: 

~2 = exp{S}, (8) 

where {S} is the normal-ordered correlation operator S, and the unperturbed 
state 4) o satisfies: 

Ho~o = Eo~o. (9) 

Then, substituting Eq. (6) into Eq. (5), we can go further to solve for the 
time-dependent wave operator O'(t) = exp{T(t)} and the level-shift phase factor 

[ at 
de(t)~ d ( t ) . ~ .  

E +  j f2'(t)Oq~o + i - - - ~  U~o = [Ho + H~ + V'(t)]f2'(t)Oq~ o (10) 

with initial conditions: 

lim f2 ' ( t )= l ,  lim e( t)=0.  (11) 

Without losing generality, we can take a linearized coupled-cluster expansion: 

O'(t)o = exp{T(t)} exp{S} ,~ 1 + S + T(t) (12) 

to show the derivation of working equations, and consider that the linearization 
of the equation takes place after cancellation of unlinked diagrams. Remaining 
non-linear terms can be included in the formalism later if desired. 

By using a projection operator P = [¢0><¢o[ and its complement operator 
Q = 1 -  P, we extend the generalized Bloch-equation [6] to a time-dependent 
form for the excitation amplitude T(t) and parameter e(t) as: 

i dT  [T, Ho]t4)o> + ~ -  t~o) = {QV'(1 + S + T)  + QHcT - SP[H~T+ V'(1 + S +  T)] 

- TP[(Hc + V')(1 + S + T)l},iokeal~o> (13) 

and 

de 
at = < ol v'(1 + s + T)I o>/< ol  0X, (14) 

where l ~Uo > = 0 [q~o >, and the subscript "v'" for the normalization term indicates 
that only valence normalization terms remain after cancellation of unlinked 
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terms [12]. Then we introduce a perturbation expansion for T(t) and E(t) in terms 
of multiphoton interactions as: 

T(t) = ~ T(n)(t), (15) 
n = l  

e(t) = ~ e(')(t), (16) 
n = l  

and T(°)(t) = 0, e(°)(t) = 0. In the order of n-photon interactions, we obtain: 

d T  (.) 
[T (n), Ho] Iq)o> + i - - - ~  Iq)o> 

= {6,~ QV'(1  + S )  + Q V ' T  ( ' -  1) + QH~T(,) 

- SP[H~T (') + 6,1V'(1 + S )  + V ' T  ( ' -  1)] 

- T( ' )PHc(1 + S )  - T("-1)PV'(1  + S )  

n - I  

-- Z T(m)p[H¢ T( ' -m)  + V'T(  . . . .  l ) ]} l inked[~O) (17) 
r n =  l 

and 

dg (n) 
dt - (7"0116n' V'(1 + S)  + V'T(n-,]l@o>l(7"ol 7"obv. (18) 

The simplest case of the solution of  Eqs. (17-18) is to consider a dipole 
approximation with one photon interaction, i.e.: 

V+(r) = ½~ . r = V*_(r), (19) 

and ~ is the polarization vector of the external electromagnetic field. Then Eqs. 
(17-18) lead to: 

d T  o) 
IT('), Holl + i - -g -  I o> 

= {av ' (1  + S)  + Q H c T  m - T m P H c ( 1  + S)}linked[~o), (20) 

e °) = 0, (21) 

and 

ds(2) 
dt - ( 7"o [ V' T (1)] ~o ) / ( 7'o [ 7"o )v, (22) 

where the parity selection rule for dipole approximation has been considered. 
The linear response function T (1) consists of positive-frequency and negative- 
frequency parts: 

T °) = T +1 e - i ~ t +  T -1 e i~°t, (23) 

where T -+1 satisfy: 

IT -+1, Ho]l o> + 11 > 
= {aV±( l  + S)  + Q H c T  ±~ -- T+-'PHc(1 + S)}~inked[~0). (24) 
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The solution of  Eq. (22) contributes to the time-averaged second-order energy 
correction: 

('21~/o, &cz)( t ) dt = -½e(og), (25) 
(D 

where ~(o9) is the frequency-dependent polarizability: 

~(o~) = - 2 < % 1 v  + T - '  + V_ T+lIOo>/<~o ] ~o>~, (26) 

which describes the linear response of the electron distribution to an external 
electric field and is directly related to dielectric constants, indices of refraction, 
photoionization cross sections and other important atomic parameters in dy- 
namic processes [13]. The expression of Eq. (26) is connected with the polariza- 
tion propagator method [14], as discussed in Ref. [4]. 

3. All-order polarization and relaxation approximation scheme 

In this section we start with a standard linearized coupled-cluster singles and 
doubles (CCSD) expansion for the conventional wave operator f2 [5-7] and the 
time-dependent wave operator f2(t) [1-4], and then we simplify the procedure to 
the PRA scheme. 

By invoking second quantization, the perturbation interaction terms in Eq. 
(1) are written in normal order with respect to the core state as: 

Hc = Vo + 111 + V2, (27) 

where 

Vo = - 2 Uaa 31- 1 2 (gHF)aa' ( 2 8 )  
a a 

V, = ~ A o. {a + aj }, (29) 
ij 

and 

V2 = 1 Z guk, {a [ a f a, ak }, (30) 

t ÷ V ' =  ~,, Vr{a i a.}, (31) Y J 
6 

where the operators inside the curl { . - .  } are arranged in normal order with 
respect to core, gukz are the Coulomb integrals, and: 

Ao = (VnF)O -- Uij. (32) 

We use subscripts, a, b, c, d to denote occupied core orbitals, subscripts r, s, t, u 
to represent unoccupied excited states, and subscripts i, j ,  k, l to designate 
arbitrary states. The correlation operators truncated up to pair-excitation terms 
can be expressed by: 

S ~ $1+ $2, T ~ TI + T 2 (33) 
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where 

S,[~o) = E Sr~a+a~l~o), (34) 
r a  

S2l~/'o) =½ ~ S.s.ba~+as+abao[~o), (35) 
rsab 

and 

+ + 
T~ ICPo) = Z T~ar aal~o>, (36) 

r a  

1 + + + T~l~o) =~ 2 T~abar as abaal~O). (37/ 
rsab 

Equations (34-37) include only terms for closed-shell atoms, but they may be 
extended to open-shell atoms [6, 12]. This is why we keep the terms correspond- 
ing to folded diagrams in Eqs. (13) and (14). 

Substituting Eqs. (27-37) into Eq. (24), we obtain a set of equations for 
amplitudes T~ and Tf  which depend on frequencies co. These equations may be 
written in matrix form as: 

_ T ~  (38)  
C]\T~)  = \RzJ 

where A, B, C, D are matrices constructed by Coulomb integrals, and Ra, R2 are 
column vectors containing driving terms from the external field. The formalism 
of Eq. (38) has been previously discussed by Monkhorst [1], Mukherjee and 
Mukherjee [2], Sekino and Bartlett [3], Dalgaard and Monkhorst [4]. Because 
the dimension of T~ amplitudes is huge, to really solve Eq. (38) is very 
demanding. However, by observing that the diagonal terms in Eq. (38) are 
dominant and the major driving terms come from R~, we can greatly simplify it. 
The explicit expression of Eq. (38) is: 

A.(Tt )  , + ~ Au(T~) j + ~ Bu(T~), = -T-cn(r~), + (R1) i 
j = I ( i  e j )  l = 1 

i =  1 , 2 , . . . , n  

(39) 

k = l , 2  . . . . .  m, (40) 

where n and m is the dimension of the single- and pair-excitation amplitudes, 
respectively. We multiply the k-th equation of Eq. (40) with (T +)i and subtract 
it from the i-th equation of Eq. (39) multiplied with (T + )k to eliminate the terms 
with co, then we find: 

( T+)k ~ j= 1 (41) 
Dkk -- Au 

Ckj(T~ )j + ~, Dkz(T~ ), + Dkk(T~ )k = -T-o)(Tf )k + (R2)k 
j = l  l = l  ( k ~ D  
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for the i-th Eq. (39) with the diagonal term Ai~. In derivation of Eq. (41), all 
terms including products of (T+)~ with non-diagonal matrix elements are 
neglected. Substituting Eq. (41) into Eq. (39), we obtain: 

A'T~ = T-wT~ + R], (42) 

where 

m BilC~ 
(A')o= +Z=, A~. --- L) a ' 

(43) 

m B i l ( R 2 ) I  
(Ri)~ = (R , ) ,  + ~_, - - - - - - ,  

= A ~  - Dr1 
(44) 

and i,j = 1, 2 . . . . .  n. The terms in Eqs. (42-44) come from single-particle 
excitations and their coupling with pair excitations, and this approximation 
scheme can be called PRA. The dimension of the matrix to be diagonalized in 
Eq. (42) is reduced to the dimension of single-excitation space. It is interesting to 
notice the modification of the denominators in Eqs. (43-44). Such necessity to 
change the energy denominators in a simplification procedure to include higher- 
order MBPT corrections was originally pointed out in Ref. [15]. Another 
simplification technique is to treat an e)-dependent matrix: 

~1 BuCo (45) 
(A')0- = A0 + t= -T- w - Dlt' 

as suggested by LSwdin [16]. Such a partition technique has been recently 
applied by Geertsen, Rittby, and Bartlett [ 17] for the equation-of-motion CC 
method. Obviously, Eq. (43) is a further approximation of Eq. (45) and is easier 
to be implemented. Of course, the validity of the approximation should be tested 
by its numerical performance. 

In a diagram representation, the terms in the left-hand side of Eq. (42) are 
shown in Fig. 1. In these diagrams, particles are denoted by upward lines and 
holes by downward lines. Dashed lines indicate interaction through the perturba- 
tion He. Exchange diagrams are also included but no t  pictured for simplicity. 
Double lines represent the correlation operator S, and bold lines the frequency- 
dependent correlation operator T. As a matter of fact, these bold lines represent 
effective interaction of the external field, and in the lowest order approximation 
they are simply the dipole interaction. Figure la accounts for final-state correla- 
tions. Contributions from Fig. l b - c  are called lowest-order core relaxation or 
rearrangement effects. The incoming core orbital represented by the free hole line 
in Fig. lb and c is perturbed due to the excitation of core states, and then 
interacts with the outgoing virtual states. The diagrams of Fig. l d -e  are 
self-energy correction terms, where either the incoming or outgoing orbital 
excites core states and interact with the excitation. Particularly, when the 
incoming core orbital and the core state excited by the operator T are the same, 
Fig. ld corresponds to the A(SCF) correction. Figure le can also be called 
polarization diagrams. The diagrams of Fig. l f - i  are another type of polariza- 
tion diagrams. The external field excites a core state, then it interacts with the 
incoming orbital and the outgoing virtual states. The diagrams of Fig. l j - I  come 
from contributions of the coupled-cluster T~ $2 terms, which are part of triple 
excitations. Figure lj is usually called an RPA diagram appearing in the RPA 
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Fig. la - l .  Diagrams 
contributing to the matrix A'. 
Downward  lines denote core 
states/holes, upward excited 
states/particles. Dashed  lines 

indicate electron-electron 
interaction. Bold  lines 

represent the operator T, 
double lines the operator S 

Fig. 2a-]. Diagrams 
contributing to the driving 
term R'  1 . Dashed  lines with a 

circle represent the external 
interaction 

method. The diagrams of Fig. lk-1 give Brueckner-orbital-type corrections, and 
Fig. 11 can also be considered as an energy shift caused by the exclusion-princi- 
ple-violation diagram [ 15]. 

The inhomogeneous driving terms of R' are shown in Fig. 2. Lines ending 
with a circle indicate the interaction of V'. Figure 2a is the lowest-order dipole 
term. Figure 2d is the ground-state correlation diagram. Other diagrams in Fig. 
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2 include higher-order ground-state correlation corrections for the dipole matrix 
element. 

In solving Eqs. (42-44), instead of inverting the matrix in Eq. (42) for each 
frequency £0, we may first solve the homogeneous part of Eq. (42): 

A ~,)(s)((J)[i) = (l)i ((I)  li) (46) 
(J) 

with eigenvalues £0i and eigenvectors ((I)[ i) ,  where the indices (I) and (J) stand 
for the indices (r, a) and (t, c) of the single-excitation amplitudes. Then, by 
inserting the Green's function: 

1 
G(£0)~)(s) = ,~ ~o; +----~ ((I)  l i ) ( i ] (J ) )  (47) 

into Eq. (42), we are able to construct the required solution as: 

T~ = G(£0) +R',. (48) 

Thus we deduce that T~ has poles at all eigenfrequencies £0 = £0i which corre- 
spond to excitation state energies of the system. Also, we can obtain oscillator 
strengths given by: 

f = 2~oi ~, (R1)(I)((I)li)(il(J))(R'l)(s). (49) 
(z)(J) 

Consequently, the frequency-dependent polarizabilities are expressed as: 

0~((D) = ~1~ 1 [G((D) + -~- G((D) - ] R '  1 = t~ " £02. f /  £02- (50 )  

The diagrams which contribute to ~(£0) are given in Fig. 3, where dashed lines 
with a solid dot represent the one-body dipole operator. 

4. Numerical results for helium 

We have used the present method to calculate the dynamic polarizabilities ~(£0) 
of He for frequencies up to beyond the Is-ionization threshold. An external 
dipole field induces two single-excitation channels 1 s 2 ~ 1 snp(3p) and (lp), which 
are related to Pl/z and P3/2 channels in the j j  coupling scheme. The numerical 
method used to solve the matrix Eq. (42) was based on the use of the finite basis 
sets described in Ref. [18]. Twenty-five positive energy states were generated 
from piecewise quartic polynomials. The calculation was carried out for angular 
momentum from 0 to 4 for the terms in Figs. 1-3. All virtual states were 
produced under the VUrl-type potential [ 19]. 

In Table 1 we compare the excitation energies, which are eigenvalues of Eq. 
(46), obtained by the present PRA method with relativistic TDS, RPA and 
experimental results. The TDA and RPA results were obtained from the present 

]Fig. 3a-d .  Diagrams 
contributing to ct(~o). Dashed 
lines with a solid dot represent 
the one-body dipole operator 
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Table 1. Triplet, singlet excitation energies (a.u.) and fine-structure splitting for 
He by TDA, RPA and the present method 

Excited States TDA a RPA b PRA a Exp. c 

ls2p3P 0.7804 0.780 0.7773 0.7704 
ls2p 1p 0.7972 0.797 0.7863 0.7797 
A(2~P-23p) 0.0168 0.017 0.0090 0.0093 

ls3p3P 0.8587 0.858 0.8541 0.8455 
ls3p 1p 0.8637 0.864 0.8570 0.8484 
A(3ap-33p) 0.0050 0.005 0.0029 0.0029 

ls4p3p 0.8852 0.885 0.8802 0.8712 
ls4ptP 0.8873 0.887 0.8815 0.8725 
A(4~P-43p) 0.0021 0.002 0.0013 0.0013 

ls5p3p 0.8975 0.899 0.8924 0.8830 
ls5p aP 0.8986 0.900 0.8931 0.8836 
A(51P-53P) 0.0011 0.001 0.007 0.0006 

a From the present calculation 
bRef. [10] 
¢ Ref. [20] 

Table 2. Oscillator strengths for He calculated by TDA, RPA, the present PRA method, and 
compared with precise variational results 

Transition TDA a RPA b PRA a "Accurate ''c 

l s2~ ls2p ip 0.2602 0.252 0.2855 0.2762 
ls 2 ~ ls3p 1p 0.0731 0.070 0.0744 0.073 
ls 2 ~ ls4p 1p 0.0299 0.030 0.0296 0.030 
ls 2 ~ ls5p 1p 0.0168 0.024 0.0164 0.015 

a From the present calculati8n 
bRef. [10] 

Ref. [21] 

code which offers op t ions  to choose  f rom different levels o f  approx ima t ions .  
Using  finite basis  sets to s tudy d ipole  exci ta t ion  in the R P A  scheme has  been 
repor ted  by  Johnson  [10]. We  used a smaller  size o f  finite basis  sets wi th  25 
B-spl ines,  and  ob ta ined  essential ly the same results. One interest ing observa t ion  
f rom Table  1 is the significant improvemen t  o f  the ca lcula ted  f ine-structure 
spl i t t ing o f  singlet and  t r iplet  states o f  He in the present  P R A  method .  This  
means  tha t  the relat ivist ic  P R A  t rea tment  yields a bet ter  ba lance  between 
different channels  o f  excited states. 

Resul ts  o f  osc i l la tor  s trengths for  t rans i t ions  f rom the g round  state to the 
first four  singlet states are l isted in Table  2, and  c o m p a r e d  with T D A ,  R P A  and 
var ia t iona l -ca lcu la t ion  results.  The var ia t iona l  results were given by  Schiff et al. 
[21] using highly accura te  var ia t iona l  wave functions.  Table  2 shows tha t  the 
agreement  between the present  work  and the accura te  va r ia t iona l  ca lcula t ions  is 
good.  
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Table 3. Frequency-dependent polarizabilities for He (a.u.) in length and velocity forms calculated 
by TDA, RPA, PRA, and compared with experimental results 

e) TDA a RPA" PRA a Exp. b 
L V L V L V 

0.0 1.398 1.322 1.389 1.383 
0.1 1.413 1.314 1.336 1.336 1.404 1.329 1.399 
0.2 1.459 1.357 1.380 1.380 1.453 1.375 1.449 
0.3 1.545 1.437 1.463 1.463 1.545 1.462 1.542 
0.4 1.689 1.572 1.600 1.600 1.699 1.608 1.700 
0.5 1.932 1.799 1.834 1.834 1.965 1.860 1.973 
0.6 2.392 2.229 2.275 2.275 2.484 2.350 2.502 
0.7 3.591 3.353 3.433 3.433 3.968 3.952 3.884 

"From the present calculation 
b As fitted by Pad6 approximation [22] 

20 

10 

-10 

Length 

- -  -- - Velocity 

0 0.3 0.6 0.9 

Frequency (a.u.) 

Fig. 4. Calculation of the 
dipole frequency-dependent 
polarizability ~(ro) of He 
below Is-ionization threshold. 
Solid line is the length result, 
dashed line the velocity result. 
The calculations are from the 
PRA method discussed in the 
text 

In Table 3, we compare dynamic polarizabilities calculated by the 
TDA, RPA, PRA method with experimental results. The PRA results in the 
length form are in better agreement with experiment than the TDA and RPA 
method. Figure 4 illustrates the frequency-dependent polarizability for He in the 
length and velocity forms with co below the photoionization threshold co 1. 
The results in Fig. 4 were calculated using the PRA method. When ¢o is greater 
than co~, the denominator in G(co)- may vanish, and Eq. (50) should be modified 
as: 

~(co) = <~o cos F P + i , (51) <~s ~ d<~i d8 82~co 2 2o) do) 

where P indicates principal-value i~tegration and df/dco is the differential oscilla- 
tor strength distribution [23]. The real part of 0¢(co) for He calculated by the PRA 
method is shown in Fig. 5. 
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20 

10 

-10 

-20 

- -  Length 

-- -- - Velocity 

1 4 

Frequency (a.u.) 

Z. W. Liu and H. P. Kelly 

Fig. 5. Real part of a(o~) for 
He. Length result indicated by 
solid line, velocity by dashed 
line 

The imaginary part of ~(o9) in Eq. (51) leads to photoionization and is 
related to the cross section by the equation [24]: 

a(og) = 4~n co Im a(og). (52) 
c 

The present procedure provides a useful alternative for molecular photoioniza- 
tion calculations, since it does not require continuum orbitals which are difficult 
to obtain for multicenter systems. One indirect algebraic approach to extract 
photoionization cross section is the Stieltjes-integral approximation developed by 
Langhoff et al. [23]. Another approach, suggested by Veseth [25], is to use the 
relation: 

c .f ~ a(og) do) ~(it/) = ~ 2  q 2 + o9 2 (53) 

to derive a(og) from values of ~(it/). Implementation of the approach based on 
Eq. (53) is in progress. 

In summary, the PRA method provides an effective approximation in 
applying time-dependent coupled-cluster theory (TDCC) to atomic and molecu- 
lar dynamic processes. Higher-order correlation effects are included, and numer- 
ical results for excitation energies, oscillator strengths and frequency-dependent 
polarizabilities for the He calculations of this paper are encouraging. The present 
method can also be extended to calculate photoionization cross sections. 
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